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The gap function in unconventional superconductors may vanish at points or lines in momentum
space, permitting electronic excitations, termed nodal quasiparticles, to exist at temperatures well
below the superconducting transition. In the vortex phase, the presence of nodal quasiparticles
should be directly observable through the variation of the heat capacity with the angle between a
magnetic field and the location of the zeroes of the gap. The heat capacity of candidate non-magnetic
unconventional superconductors Lu(Y)Ni2B2C were found to exhibit fourfold oscillations with field
angle, the first such observation. The observed angular variations are in quantitative agreement
with theory, confirming that quasiparticles are created via Doppler shifts at nodes along < 100 >.
Anomalous disorder effects have been also observed in the field-angle dependent heat capacity Cp(α).
In a slightly disordered sample, anomalous secondary minima along < 110 > appeared for µ0H >
1 T, leading to an eightfold pattern. The coexistence of an anisotropic superconducting gap and
nonlocal effects is shown to drive the anomalous behavior. These results demonstrate that field-
angle-dependent heat capacity can be a powerful tool in probing the momentum-space gap structure
in unconventional superconductors such as high Tc cuprates, heavy fermions, borocarbides, etc.

I. INTRODUCTION

Most superconductors behave conventionally; elec-
tronic excitations are suppressed by the BCS gap causing
the electronic heat capacity, for example, to be exponen-
tially small at temperatures well below the superconduct-
ing transition. Recently, a number of superconductors,
cuprates1 and heavy-fermion metals2 among them, have
been found to be unconventional in that they exhibit gap-
zero (or nodal) points or lines in momentum space. Elec-
tronic excitations - nodal quasiparticles (nqp) - are then
observed at low temperatures, giving rise to power-law
rather than exponential, behavior. Unlike gapless super-
conductivity, which can occur in conventional supercon-
ductors, the Fermi momenta of these quasiparticles are
restricted to nodal regions of the Fermi surface, giving a
strong directional dependence to various physical prop-
erties.

In 1992, Yip and Sauls proposed a nonlinear Meiss-
ner effect in the penetration depth of cuprate high-Tc

superconductors.3 Since the effect uses the field-direction
dependence of the supercurrent in locating the positions
of the nodal lines (or points) of an unconventional gap in
momentum space, it is a stronger test of the symmetry
of the superconducting state than power-law behavior for
the penetration depth. The search for the fundamental
manifestation of d-wave symmetry has been very contro-
versial from an experimental point of view.4,5,6,7,8 Li et

al. questioned the observability of the nonlinear Meissner
effect.9 They introduced nonlocal electrodynamics for a
d-wave superconductor and found that the local nonlin-
ear Meissner effect is not observable for fields below a
crossover scale H∗ describing the competition between
nonlinear and nonlocal effects in the Meissner state. For

most orientations of the screening current, the crossover
is of the same order as or greater than the lower critical
field Hc1.

In conventional type II superconductors, the vortex
cores play a crucial role in transport properties because
a relatively high density of bound states is created there
by the suppression of the local order parameter and ex-
tended quasiparticle states are completely gapped. In
a new symmetry class such as cuprate superconductors,
however, Hirschfeld et al. argued that extended quasi-
particle states are dominant over vortex bound states
because of the presence of the nodes.10 The anisotropy
in the gap ∆k in momentum space fixed to the crystal
axes will induce an angular anisotropy in the current re-
sponse due to the coupling between quasiparticles and
supercurrent, leading to the fourfold angular variation
in field-angle thermal conductivity of unconventional su-
perconductors with d-wave order parameter. In 1995, Yu
and Salamon et al. demonstrated for the first time that
the heat transport of YBCO oscillates with in-plane field
angle.11,12 Subsequent experiments have confirmed the
feature and thermal conductivity has been established as
a tool that can probe the momentum-specific gap nature
in unconventional superconductors.13,14,15 Such measure-
ments, however, are complicated by the competition be-
tween Andreev-scattering and Doppler-shift effects.

A much more direct, and far more difficult, exper-
iment is to detect the low-energy density of states of
the nodal quasiparticles through its modulation by an
in-plane field. Heat capacity provides such a measure.
Working in the 2D limit, Vekhter et al. have shown that
the density of states of a d-wave superconductor exhibits
four-fold oscillation with field angle with respect to crys-
tal axes.16 From the experimental stand point, the search
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for the oscillation has been puzzling.17,18 The expected
30 % of oscillation amplitude is within the reach of exper-
imental error, but the effect has proven elusive. Whelan
and Carbotte argued that the Zeeman energy splitting
µH competes against the anisotropy.19 At a critical field
Hc, Zeeman and Doppler energy scales become compa-
rable and the DOS variation with field angle vanishes.
Recently, Won and Maki used a semi-classical approxi-
mation and extended the 2D Vekhter model to a 3D su-
perconductor with modulated cylindrical Fermi surface
by including quasiparticles with an out-of-plane momen-
tum component.20 The 3D effect causes a strong suppres-
sion of the oscillation amplitude to around 6 %, making
the observation much more difficult.

In this paper, we review the direct observation of a phe-
nomenon that should be common to many so-called un-
conventional superconductors, those whose Cooper pairs
have symmetries more complex than originally envisaged
by Bardeen, Cooper and Shrieffer in their classic the-
ory of superconductivity. If, in particular, the pairs have
the symmetry similar to d-orbitals in atoms, there will be
certain directions in momentum space in which electronic
excitations, termed quasiparticles, can arise without an
energy gap.

In section 2, the experimental method, sample prepa-
ration and characterization will be briefly explained. In
section 3, the field-angle heat capacity of LuNi2B2C is
shown to be similar to results reported previously for
YNi2B2C.30 The magnetic field dependence will be an-
alyzed by a Won-Maki extension of the Vekhter et al.

calculation. The heat capacity dependence on magnetic
field angle will be discussed in terms of 3D nodal quasi-
particle theory and used as a piece of confirming evidence
that LuNi2B2C and YNi2B2C belong to a class of super-
conductors with nodes in gap function. An eightfold pat-
tern appeared in a slightly disordered Lu1221 supports
the coexistence of nonlocal effects and anisotropic gap
effects. Then, concluding remarks will follow in section
4.

II. EXPERIMENTS

The electronic specific heat is a fundamental physical
quantity that measures the electronic density of states
(DOS) directly and is a bulk property. As noted in the
Introduction, it was recently suggested that the specific
heat can be used to study the angle-resolved gap struc-
ture of unconventional superconductors by studying the
DOS variation with magnetic field angle.16 Considerable
efforts have been expended to detect the field-angle vari-
ation arising from the anisotropic gap structure in un-
conventional superconductors, especially in YBCO.17,18

Those efforts, however, have suffered from intrinsic ex-
perimental limitations. First, a very limited set of field
directions were investigated. Typically, the crystal-axes
and diagonal directions were chosen because they give
the largest contrast in DOS for pure dx2

−y2 or dxy pairing

FIG. 1: Sample assembly in ac calorimetry

symmetry. If the pairing symmetry is the mixture of two
order parameters, such as d+s−wave, then the two direc-
tions do not represent gap-maximum or gap-zero (nodes)
directions because the nodes move away from the diago-
nal directions. Second, temperature-variable heat capac-
ity intrinsically contains large background contributions
such as lattice vibrations or thermally excited quasipar-
ticles. The large backgrounds cause an uncertainty in
extracting the field-induced part, and can easily obscure
the small angular variation.

With those problems in mind, we built a new specific
heat probe designed exclusively to study the gap struc-
ture of superconductors in momentum space. Instead
of varying temperature as was done in many previous
works, we fixed temperature and magnetic field intensity
and made the field angle as an only variable. This ex-
perimental scheme enabled us to study the small angular
oscillation, which is typically less than 1 % of the mea-
sured heat capacity. Some of the key ingredients to this
scheme are as following. First, temperature and mag-
netic field should be very stable. Otherwise, even a small
fluctuation could obscure the small change with angle.
A Physical Properties Measurement System (PPMS) by
Quantum Design was used as a cryogenics platform to
satisfy those conditions. Second, a stepping motor with
a gear ratio 1:141 was used to rotate the sample and was
controlled by a driver from PPMS. Instead of measuring
limited directions, we were able to study the angle de-
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FIG. 2: Upper panel shows the field-angle heat capacity of
optimally doped YBCO at 1.7 K and 7 T. The phase shift
with field angle is shown in the lower panel. In both panels,
the squares describe the data measured by the first pair of
thermocouple wires and the circles by the second pair.

pendence of heat capacity in increments of 3◦ or smaller.
Third, the heat capacity measurement should be sensitive
enough to pick up the minute change with field angle. In
addition, the measurement must be able to handle small
single crystals because their weight is usually less than
1 mg. AC calorimetry was chosen because it has a sen-
sitivity of up to 0.01 % of the measured heat capacity
as well as a capability to measure even microgram (µg)
samples.21

The ac method used here is an adaptation of the Sul-
livan and Seidel technique.22 Fig. 1 shows the sample as-
sembly. The front face of the sample was coated with col-
loidal graphite suspension (DAG) thinned with isopropyl
alcohol to prevent a possible change of the optical absorp-
tions of the sample. The sample was weakly coupled to
the heat bath through helium gas and suspending ther-
mocouple wires. At high temperatures, the thermal cou-
pling can be adjusted mainly by controlling the amount of
the helium gas surrounding the sample, while the thermal
leak through thermocouple wires should be taken into ac-
count at cryogenic temperatures. As a heating source, in-
frared laser light (λ = 789.2 nm) was used. The light was
modulated electronically to make a square-wave pulse
and was guided into the PPMS sample space through
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FIG. 3: The averaged field-angle heat capacity of YBCO at
1.7 K and 7 T. The solid line shows a theoretical calculation
of fourfold oscillation with the oscillation amplitude of 3.4 %
(see text).

an optical fiber. The oscillating heat input incurred a
steady temperature offset (or dc offset) against the heat
bath with an oscillating temperature superposed. The
measured oscillation temperature Tac was converted to
heat capacity by the relationship C ∝ 1/Tac in a proper
frequency range.

In our field-angle heat capacity measurements, two
thermocouple pairs were used to measure the temper-
ature oscillations Tac simultaneously. The two sets of
Au/Fe and chromel thermocouple wires were configured
so that they were 90◦ apart, which enabled us to rule out
the field-angle contribution from the thermocouple wires
due to field-dependent thermopower of Au/Fe. If the an-
gular oscillations come from our experimental setup, the
two signals will be out of phase while they will be in
phase with each other if they come from sample. As an
example, we studied an optimally doped YBCO (Fig. 2).
The squares in the top panel describe the angular heat
capacity measured by the first pair of the thermocouple
wires and the circles by the second pair. The two sets of
data were measured simultaneously at 1.7 K in 7 T with
magnetic field rotating within the CuO2 plane of YBCO.
Both of them show clear two-fold oscillations with field
angle measured against a-axis. Note that the oscillations
are out of phase with each other, indicating that they
come from the thermocouple wires. The bottom panel
of Fig. 2 shows the phase shift with field angle. There is
no correlation with the heat capacity shown in the upper
panel, confirming that the two-fold oscillation of the heat
capacity is not related to intrinsic sample properties.23

In Fig. 3, we show the averaged heat capacity of YBCO
(2Cave = C1 + C2). As expected, the two-fold compo-
nents are almost suppressed. Now that the artifact from
the experimental setup is removed, we can study the in-
trinsic sample property. The solid line describes a fit by
a cusped fourfold variation with oscillation amplitude of
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3.4 %, i.e., C(α) = C0 + c4(1 + Γ| sin 2α|). Here, α is the
magnetic field angle with respect to the a-axis and Γ is
the oscillation amplitude. The periodicity is π/4 and the
minima are located at 〈110〉 directions, which are consis-
tent with dx2

−y2−wave order parameter in YBCO where
the nodes are located along 〈110〉. The field-angle oscil-
lation, however, is obscured by noise which is comparable
to the angular change.

III. OBSERVATION OF NODAL
QUASIPARTICLES AND NONLOCAL EFFECTS
IN THE NONMAGNETIC SUPERCONDUCTORS

LU(Y)NI2B2C

The discovery of RNi2B2C (R = Y, Lu, Tm, Er,
Ho, and Dy) captured attention of the superconductiv-
ity community because of its relatively high transition
temperature (Tc) and the coexistence of magnetism and
superconductivity.24,25,26 The highest Tc’s in the boro-
carbide family are 16.5 K and 15.5 K in the nonmagnetic
members with Lu and Y elements respectively. Amid
the controversy over the pairing symmetry of the boro-
carbides, there is growing evidence that the gap function
is highly anisotropic and possibly has nodes where the
gap becomes zero in momentum space. In specific heat
measurements, a power law behavior was observed in the
temperature dependence and the electronic coefficient
γ(H), to the extent it can be extracted, follows a square-
root field dependence.27,28 Thermal conductivity mea-
surements showed low energy excitations at as low as 70
mK and an anomalous magnetic field dependence similar
to the unconventional superconductor UPt3 but differ-
ent from the exponential dependence characteristic of an
isotropic s-wave gap.29 Compelling evidence for the pres-
ence of nodes along 〈100〉 directions has been reported
from both z-axis field-angle thermal conductivity15 and
field-angle heat capacity measurements of YNi2B2C.30

Recently, a magnetic field-driven flux line lattice (FLL)
transition has been observed both in the magnetic mem-
ber (Er) and in the nonmagnetic members (Y and Lu)
of the tetragonal borocarbides.31,32,33,34 The transition
from square to hexagonal vortex lattice occurs due to the
competition between sources of anisotropy and vortex-
vortex interactions. The repulsive nature of the vor-
tex interaction favors the hexagonal Abrikosov lattice,
whose vortex spacing is larger than that of a square lat-
tice. The competing anisotropy, which favors a square
lattice, can be due to lattice effects (fourfold Fermi sur-
face anisotropy)35 or unconventional superconducting or-
der parameter.36 In this section, we present evidence that
both the gap anisotropy and nonlocal effects coexist and
the coexistence is the origin of the anomalous crossover
from a fourfold pattern to an eightfold pattern in C(α)
with increasing field in LuNi2B2C.
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FIG. 4: Temperature dependence of the in-plane resistivity
of sample A (crosses) and sample N (circles).

A. Disorder effects

The best samples of LuNi2B2C exhibit behavior iden-
tical to that reported earlier for YNi2B2C,30 but disor-
dered samples are significantly different. Three single
crystals of LuNi2B2C from different batches were stud-
ied. Sample N was annealed at T = 1000 C◦ for 100
h under high vacuum, while sample A and C were not
annealed. The annealed crystal, sample N, showed the
highest Tc (16.1 K) and residual resistivity ratio (RRR)
of 27, while the unannealed sample A recorded the low-
est Tc of 15.5 K and RRR of 16 (see Fig. 4), suggesting a
judicious postgrowth annealing may improve the sample
quality. The resistivity at Tc is 2.34 and 1.44 µΩ·cm for
samples A and N, corresponding to mean-free paths of
144.5 and 234 Å respectively. Assuming that 16.1 K is
the Tc for a pure sample, sample A is equivalent to 0.8 %
of Co doping on the Ni site; i.e., Lu(Ni1−xCox)2B2C with
x = 0.008.37 Sample C with Tc = 15.8 K is less disordered
than sample A.

For an isotropic s-wave superconductor, the contribu-
tion to the density of states (DOS) comes from the lo-
calized states in the vortex core. Since the density of
vortices is proportional to the magnetic field, the field-
induced DOS is linearly dependent on the field and β = 1.
For superconductors with line nodes, delocalized states
leaking through the nodes dominate the DOS. When
we integrate the contribution in a vortex unit cell and
multiply by the density of vortices, the electronic DOS
is proportional to

√
H in an intermediate region, i.e.

Hc1 ≪ H ≪ Hc2, where Hc2 is upper critical field. This
so called Volovik effect gives β = 0.5 for line node and
β = 1 for point node.28 Recently, there have been several
reports that s-wave superconductors such as CeRu2

39

and NbSe2
27 behave like d-wave superconductors, show-
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ing sub-linear magnetic field dependence in specific heat.
Ichioka et al.

40 extended the Volovik calculation to the
entire region, i.e. Hc1 < H < Hc2. While the Volovik ef-
fect considered the delocalized states only, they included
the localized states bound in a vortex core and the quasi-
particle transfers between vortices. In their numerical
calculation, the DOS dependence in the d-wave pairing
states gives an exponent β = 0.41, rather than Volovik’s
β = 0.5. As for those with anisotropic s-wave pairing
symmetry, the exponent becomes 0.67, which is clearly
distinguishable from 0.5 or 0.41.

The disorder effects are also manifested in the mag-
netic field dependence of the electronic specific heat Cel.
In pure samples (sample C and N), the low-temperature

specific heat shows a
√

H dependence in the mixed state,
but there is a deviation from the

√
H dependence at a fi-

nite field in the disordered sample A. Fig. 5(a) shows the
heat capacity of sample C at 2.5 K with increasing (cir-
cles) and decreasing (crosses) magnetic field along [100]
direction. The dashed line which represents the least
square fit of C0 + b(H − H0)

β best describes the field
dependence with β = 0.46. Here C0 is the zero-field heat
capacity and the offset H0 is essentially a lower critical
field (Hc1) and 0.1 T was used for the least-square fit.

Figures 5(b)-(d) show the heat capacity of the disor-
dered sample A at 2.5, 4, and 8 K respectively. Low-field
data were best described by the square-root field depen-
dence (dashed lines) and the arrows indicate the points
where the data deviate from the fit. The deviation field
shows a systematic increase with temperature, i.e, 0.8 T
at 2.5 K, 1.8 T at 4 K, and no clear deviation at 8 K.
Above the deviation field, the data fall below the

√
H

line.

B. Angle-resolved Specific Heat

In addition to the
√

H dependence in unconventional
superconductors, the density of states N(H, α) also de-
pends on the orientation of the superfluid flow with re-
spect to the nodes, which results in angular oscillation in
C(α).16,41 The supercurrent flow around a vortex leads
to a Doppler energy shift, δE = vs · h̄kF , where vs is the
velocity of the superfluid and h̄kF is the Fermi momen-
tum of nodal quasiparticles. When the field direction is
normal to the plane containing nodes, the DOS is the av-
erage over the whole Fermi surface, leading to a square
root field dependence. When the field is in the nodal
plane, however, the Doppler shift has a field-direction
dependence as well, δE ≈ Eh

ρ sin β sin(φ − α).16 Here φ

is an azimuthal angle of the gap node and β is a vortex
current winding angle. The energy scale associated with
the Doppler effect is defined as

Eh =
ah̄v∗

2

(

πH

Φ0

)1/2

, (1)

where the geometrical constant a is order of unity, v∗ =√
vavc is the average Fermi velocity, and Φ0 is the flux
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(a) Sample C at 2.5 K
   H up
   H down

FIG. 5: (a) Heat capacity of sample C at 2.5 K for H ‖[110].
(b)-(d) Heat capacity of sample A at 2.5, 4, and 8 K, respec-

tively for H ‖[110]. Dashed lines are H1/2 fits and arrows

indicate the deviation points from the H1/2 dependence.38

quantum. The variable ρ = r/R, where r is the distance
from the vortex core and 2R is the intervortex distance.
Working in the 2D limit, Vekhter et al. calculated the
DOS , N ≈ (N1 + N2)/2, for an in-plane magnetic field
when ω, Eh ≪ ∆0 where ω is the Matsubara frequency,
and for four nodes at angles αn from orthogonal axes in
a plane :

Ni(ω, h, α)

N0

=

{ ω
∆0

(1 + 1
2x2 ) (x = ω/Ei ≥ 1)

Ei

π∆0x [(1 + 2x2) arcsinx + 3x
√

1 − x2 (x ≤ 1),

(2)
where i=1,2, E1 = Eh| sin(αn − α)| and E2 =
Eh| cos(αn − α)|. The energy E1 is for nodes close to
the field direction, while E2 is for nodes far from it. N0

is the normal-state density of states.
When the magnetic field is along a nodal direction,

α = αn +mπ/2 where m is an integer; the two nodal po-
sitions perpendicular to the field contribute fully, while
the two parallel to the field do not contribute at all be-
cause the Doppler shift is an inner product between the
superfluid velocity vs and the quasiparticle momentum
h̄kF . When the field is along a maximal gap direction
(α = αn +(2m+1)π/4), in contrast, all four nodal points
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contribute equally to the DOS with a factor of
√

2 less
than the full contribution. When we add all the contribu-
tions, the total DOS has minima along nodal directions
and maxima along maximal gap directions. At T = 0 K,
the oscillation is cusped with a contrast of 1/

√
2 between

the minima and the maxima and is independent of the
magnetic field. At a finite temperature, however, the
sharp contrast is washed out due to thermal effects, lead-
ing to more rounded minima and the DOS oscillation now
depends on the magnetic field.

The oscillation amplitude depends on the gap geom-
etry and dimensionality of the superconductors. The
Vekhter et al. model above assumes the Fermi momen-
tum of nodal quasiparticles (nqp’s) to be restricted to
the nodal plane. A more realistic calculation, therefore,
is to allow nqp Fermi momentum out of the nodal planes,
which decreases the amplitude of the angular variation.20

We account for the 3D effect by replacing the Doppler-
related energies E1 and E2 by E3D

1 = Eh[sin2(αn − α) +
cos2 θ]1/2 and E3D

2 = Eh[cos2(αn−α)+cos2 θ]1/2 respec-
tively and integrate the DOS over polar angle θ:

N(w, h, α) =
1

2π

∫ 2π

0

1

2
[N1(w, h, α, θ)+N2(w, h, α, θ)]dθ.

(3)
The qualitative features are the same as those in the 2D
case except that the oscillation amplitude decreases from
41 % to 6 % in 3D superconductors at T = 0 K. The
3D effect was indeed confirmed experimentally in the
field-angle heat capacity measurement of YNi2B2C.30 We
note that a similar effect is predicted for an (s+g)-wave
superconductor.42

The upper panel of Fig. 6 shows the field-directional
angular dependence of the total heat capacity at 2 K
and 0.6 T, where the transverse magnetic field was ro-
tated within the basal plane of LuNi2B2C. The total
heat capacity consists of constant, 2-fold, and 4-fold con-
tributions: Ctotal(α, H) = C0 + C2(α, H) + C4(α, H).
The field-independent constant C0 is due to nonmag-
netic contributions, such as the lattice heat capacity and
thermally excited nqp’s, and is determined experimen-
tally from C(T ) at 0 T. The 2-fold contribution C2(α, H)
comes from our experimental setup and has a functional
form of c2 cos 2α. The Au/Fe and chromel thermocouple
wire is a major source of this contribution, but misalign-
ment of the basal plane of the sample against the field di-
rection could also lead to the 2-fold component because of
the anisotropy between in-field ab-plane and c-axis heat
capacities. The dashed line in the upper panel of the
Fig. 6 is C2(α, H); the 2-fold signal is about 40 % of the
4-fold component at 0.6 T and increases with magnetic
field.

The lower panel of the Fig. 6 shows the 0.6 T data af-
ter subtraction of the 2-fold and the lattice components
: C4(α, H) = Ctotal(α, H) − C2(α, H) − C0. The 4-fold
variation is clearly seen. To make a quantitative analysis,
we fit our data to C4(α, H) = c4(H)(1 + Γ| sin 2α|). The
coefficient c4(H) and the angular contrast Γ were treated
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FIG. 6: Field directional dependence of the heat capacity of
sample A at 2 K and 0.6 T. The field angle α is measured
with respect to the a-axis. The top panel shows the total
heat capacity (open circles) and the 2-fold component, C2(α)
relative to baseline of 4.9 (dashed line). The bottom panel
shows the same data after subtraction of the 2-fold and lattice
contributions, C4 = Ctotal − C2(α) − C0. The data were
best described by a cusped function, C4(α, H) = c4(H)(1 +
Γ| sin 2α|) with c4 = 1.45 and Γ = 0.0415.

as field dependent fitting parameters. The solid line in
the lower panel of Fig. 6 shows the fit with Γ = 0.0415
at 0.6 T. The sharp minima along < 100 > indicate
that there exist gap minima or nodal structures along
those directions. The nodal positions and the small os-
cillation amplitudes are consistent with previous reports
of YNi2B2C.15,30 The field-angle heat capacities of sam-
ple C and N at low fields are essentially the same as that
of sample A.

Figure 7 gives 3D surface plots of the field-angle heat
capacity of sample C at 2.5 K. The x-axis is the in-plane
field direction α with respect to the crystal axes and the
y-axis is the applied magnetic field intensity in tesla. The
z-axis is the four-fold heat capacity normalized by the
Doppler-induced heat capacity: C4(H, α)/c4(H). Fig-
ure 7(a) is a numerical calculation of the 3D nodal quasi-
particle theory16,20 and Fig. 7(b) are the experimental re-
sults of sample C. In the quasiparticle theory, the only ad-
justable parameter is the Doppler-related energy Eh(v∗)
(see Eq. 1). In the numerical calculation, we used a = 1,
the gap maximum ∆ = 1.76kBTc, and the average Fermi
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FIG. 7: The 3D surface plots describe magnetic field-angle (x-
axis) and field-intensity (y-axis) dependence of the in-plane
specific heat ratio at 2.5 K: C4(H,α)/c4(H). Fig. (a) is a
numerical calculation of the specific heat due to nodal quasi-
particles in 3D system and Fig. (b) is the experimental data
of the single crystal sample C. The experimental data were
FFT low-pass filtered with a cut-off frequency of 0.03 Hz with
angles being considered as time. Both plots (a) and (b) were
constructed with 0.5, 1, 1.5, and 2 T data sets.

velocity v∗ =
√

vavc = 1.3 × 107 cm/sec. The extracted
Fermi velocity is similar to that from the band struc-
ture calculation (

√
vavc ∼ 1.2 × 107 cm/sec).35 The 3D

plots of sample N show similar behavior to that of sam-
ple C requiring a larger Fermi velocity, i.e., v∗ = 1.5×107

cm/sec.23 The larger value may be due to the uncertainty
in determining the field-induced heat capacity.

In field-angle heat capacity measurements, there are
three relevant energy scales, which are the Doppler en-
ergy scale Eh, the paramagnetic energy µH , and the ther-
mal energy of kBT . In the mixed state, the paramagnetic
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FIG. 8: Angle-resolved heat capacity of sample A at 2 K and
a 4 + 4 pattern (solid line). The magnetic fields are 0.6, 1,
1.5, and 2 T, from top to bottom panel.

energy is of order 1 K and the Doppler energy scale is
∼ 10 K. The latter is much higher than the experimental
temperature 2 K. Therefore, the Doppler effect on the
nodal quasiparticles is dominant over the thermal and
the paramagnetic effects in this regime, indicating that
the 3D nodal quasiparticle theory of the Doppler effect is
applicable as was evident from the reasonable agreement
between experiments and the numerical calculations.

Figure 8 shows the heat capacity of sample A as a
function of field angle at 2 K and 0.6, 1.0, 1.5, and 2.0 T
from top to bottom panel. At 1 T, surprisingly, addi-
tional minima develop along < 110 >, producing two
sets of fourfold patterns or 8-fold, an effect not observed
in either sample C or N with higher Tc ’s. The crossover
field from the fourfold to the (4+4) pattern of sample A
lies between 0.6 and 1 T, which is also the point where
the heat capacity of sample A deviates from the

√
H de-

pendence (see Fig. 5). With increasing field, the splitting
gradually disappears and the field-angle heat capacity re-
covers its fourfold pattern above 4 T. We also measured
the field-angle heat capacity of sample A at 4 K to check
if the anomalous peak splitting persists at higher tem-
peratures (Fig. 9). The fourfold pattern now persists to
1 T, evolving into two sets of fourfold patterns above 2 T.
The 4 T data at 4 K have a shape similar to the 2 T data
at 2 K. The crossover field Hs1 increases with increasing
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FIG. 9: Angle-resolved heat capacity of sample A at 4 K and
a 4 + 4 pattern (solid line). The applied magnetic fields are
1, 2, 3, and 4 T, from top to bottom panel.

temperature.

It is worth noting that the anomalous 8-fold pattern
occurs only at sample A, which has half the electronic
mean free path of the sample N, while the Tc is slightly
decreased. According to the nonlocal theory by Kogan
et al.,35 the hexagonal-to-square FLL transition depends
on the electronic mean free path l and the superconduct-
ing coherence length ξ. Gammel et al. found that a mere
9% of Co doping onto the Ni site in Lu1221 can make
the FLL transition field 20 times higher than that of the
pure matrix for H ‖ [001].43 The FLL transition field
for pure Lu1221 is around 0.2 T,44 which is well below
our measurement range, suggesting the nonlocal effects
would not influence the field-angle heat capacity of purer
samples. In contrast, the disorder in sample A increases
the transition field to at least twice higher than that of
sample N,43 i.e., to a field relevant in the field-angle heat
capacity measurement of sample A.

When the magnetic field is rotated within the ab-plane,
the transition field may differ with different field direc-
tions because of the different nonlocal range, i.e., ξ/l.
The two different transition fields can be characterized
by Hs1 for < 110 > and Hs2 for < 100 >. As a magnetic
field rotates within the ab-plane for Hs1 ≤ H ≤ Hs2

, the FLL will experience a structural change (or dis-
tortion), i.e. hexagonal for H ‖ [100] and square for
H ‖ [110]. Since the borocarbides have nodes on the
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FIG. 10: Oscillation amplitude Γ of sample C (circles) and
sample N (squares). The dashed line is from the 3D nodal
quasiparticle theory with vF = 1.5×107 cm/sec. The bottom
panel contrasts the oscillation amplitude due to the nonlocal
effects (circles) and gap anisotropy (squares).38

Fermi surface, the DOS will differ depending on the FLL
structure.40 The negative deviation from the

√
H above

Hs1 in the heat capacity of sample A (see Fig. 5b) also in-
dicates that the DOS of the hexagonal FLL is larger than
that of the square FLL. In addition to the anisotropic
gap modulation,30 the DOS will oscillate due to the FLL
anisotropy, leading to a (4+4)-fold pattern.

When H < Hs1 or H > Hs2, the field-induced pa-
rameter c4 can be considered as constant and the DOS
oscillation is just from the gap anisotropy. When Hs1 <
H < Hs2, in contrast, c4 is not independent of field di-
rection any more, but oscillates due to the anisotropic
FLL transition field: c4 = p1(1 + γ|sin2(α − 45)|). c4

has maxima along < 100 > and minima along < 110 >.
Then, the field-angle heat capacity can be written as

C4(α) = p1(1 + γ|sin2(α− 45)|)(1 + Γ|sin2α|), (4)

where p1 is a field-dependent fitting parameter. The
value Γ represents the oscillation due to gap anisotropy
in pure samples (see Fig. 10). The nonlocal effects give
rise to a 45◦-shifted 4-fold pattern and are accounted for
by γ. The solid lines in Fig. 8 and 9 are least square
fits of Eq. (4) and represent the data very well. The
oscillations due to the nonlocal effects (γ) and the gap
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anisotropy (Γ) at 2 K are compared as a function of mag-
netic field at the bottom panel of Fig. 10. The FLL effect
γ increases sharply above 0.6 T and decreases gradually
to zero at 4 T, indicating that the low field corresponds
to Hs1 and the high field to Hs2. It is interesting to
note that Miranovic et al. came to a similar conclusion
by solving quasi-classical Eilenberger equation for nodal
superconductors with anisotropic Fermi velocity.45

The H − T phase diagram of the disordered sample A
is shown in Fig. 11. Hs1 is the FLL transition field for
H ‖ [110] and Hs2, for H ‖ [100]. The increase in the
transition fields with increasing temperature is consistent
with the nonlocal prediction where the nonlocal range de-
creases with raising T .35 The difference in the FLL tran-
sition fields for H ‖ [100] and H ‖ [110] can be due to
the upper critical field Hc2 anisotropy between the two
directions. Since the effective nonlocal range is propor-
tional to the coherence length ξ, the Hc2 anisotropy leads
to a higher FLL transition field for H ‖ [100] than that
for H ‖ [110]. The FLL transition occurs when the in-
tervortex distance is comparable to the effective nonlocal
radius. The observed ratio Hs2/Hs1 ≈ 4 is larger than
the predicted ratio 2,35 but is smaller than the reported
ratio of 10 in YNi2B2C.33 The difference between exper-
iments and theory may attest to the need that we take
into account both the nonlocality and the anisotropic gap
nature of the borocarbides.

IV. CONCLUDING REMARKS

We reviewed the first direct evidence for a variation
of the DOS of nodal quasiparticles (nqp’s) of uncon-
ventional superconductors Lu(Y)Ni2B2C. The four-fold

field-angle oscillation in the heat capacity of the boro-
carbides is due to the nqp’s experiencing a field-induced
Doppler energy shift. The 3D superconductivity of the
borocarbides is reflected in the small oscillation ampli-
tude of 4 %, not 40 % expected for 2D superconductors.
A dramatic change has also been observed in a slightly
disordered Lu1221. A fourfold pattern in C(α) changed
to an eightfold or two sets of fourfold pattern at the FLL
transition field, evidencing that both nonlocal effects and
an anisotropic superconducting gap coexist in the boro-
carbides.

Even though it is clear that there are nodes along
< 100 > directions in the borocarbides, the type of
nodes has yet to be answered. Based on a theoretical
calculation,46 it is asserted that the rapid decrease of
the oscillation amplitude of the angle-dependent ther-
mal conductivity with polar angle θ is due to a point
node gap located along [100].15 Miranovic et al., how-
ever, claimed that the oscillation amplitude decreases
sharply with θ for both vertical line node and the s + g
point node cases, suggesting that the conical field rota-
tion experiments may not be able to distinguish the two
cases.45 In order to determine the precise gap structure,
instead, they suggested the field dependence of the os-
cillation amplitudes at low fields. The oscillation mono-
tonically decreases with increasing field for point nodes,
while it has a maximum for line nodes. We plan to mea-
sure conical field-angle heat capacity and extend our mea-
surements to lower fields, which could shed more light
on the controversy of the nature of nodes. A system-
atic study on disorder effects through Co doping on Ni
site, LuNi2−xCoxB2C, will clearly elucidate the correla-
tion between nonlocal effects and anisotropic gap effects.

It is gratifying that other field-angle heat capacity have
been followed after our pathbreaking work.30 Deguchi
et al. applied the technique to the spin-triplet super-
conductor Sr2RuO4 and found a fourfold oscillation for
H ⊥ c−axis, providing decisive information on the multi-
band superconductivity and gap structures.47 Aoki et al.

have studied the heavy-fermion superconductor CeCoIn5

and found a clear fourfold oscillation in C(α) with min-
ima along < 100 >, suggesting the presence of line nodes
at those directions.48 Their interpretation of the super-
conducting gap symmetry as dxy−wave, however, con-
tradicts that (dx2

−y2) by thermal conductivity data.49

It is interesting to note that the angle-resolved specific
heat directly measures the zero-energy density of states
(ZEDOS). On the other hand, the thermal conductivity
data κ(α) necessarily involve both the ZEDOS and the
quasiparticle scattering time τ(α),11 making it difficult
to identify the gap node direction in some cases.

Finally, we mention that the angle-resolved specific
heat measurement opened a new venue to better under-
standing unconventional superconductivity. Even though
only a few classes of unconventional superconductors
have been studied by this technique,30,38,47,48 new fea-
tures on their superconducting properties have been re-
vealed, indicating a whole new aspect of superconductiv-
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ity may await to be found.
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